1 Load packages
library(tidyverse) # data wrangling
2 Introduction
In this post, I want to show you how to work with list columns in R. List columns are a powerful feature of the tidyverse
that allow you to store multiple objects in a single column of a data frame. This can be useful when you have a list of objects that you want to keep together, such as a list of data frames or a list of models.
3 Example data
my_path <- paste0(here::here(),"/content/post/2024-10-13-working-with-list-columns-an-example/df_with_list_columns.rds")
file.exists(my_path)
#> [1] TRUE
df <- read_rds(my_path)
4 Add list column 1
df |>
mutate(id_is_seq_1_to_n = map_lgl(data, function(df) identical(df$id, 1:88)))
#> csv_file_name
#> 1 person01.csv
#> 2 person02.csv
#> 3 person03.csv
#> 4 person04.csv
#> 5 person05.csv
#> data
#> 1 7.0000, 8.0000, 12.0000, 16.0000, 20.0000, 21.0000, 23.0000, 24.0000, 28.0000, 34.0000, 37.0000, 39.0000, 45.0000, 48.0000, 51.0000, 54.0000, 55.0000, 58.0000, 59.0000, 66.0000, 67.0000, 68.0000, 69.0000, 70.0000, 73.0000, 76.0000, 81.0000, 91.0000, 97.0000, 98.0000, 113.0000, 122.0000, 125.0000, 128.0000, 134.0000, 137.0000, 142.0000, 146.0000, 147.0000, 153.0000, 155.0000, 156.0000, 158.0000, 162.0000, 164.0000, 165.0000, 172.0000, 175.0000, 176.0000, 181.0000, 189.0000, 190.0000, 194.0000, 195.0000, 200.0000, 202.0000, 213.0000, 214.0000, 217.0000, 220.0000, 224.0000, 231.0000, 234.0000, 244.0000, 248.0000, 249.0000, 250.0000, 257.0000, 264.0000, 278.0000, 281.0000, 282.0000, 286.0000, 292.0000, 296.0000, 298.0000, 300.0000, 303.0000, 305.0000, 307.0000, 317.0000, 319.0000, 325.0000, 327.0000, 328.0000, 333.0000, 337.0000, 342.0000, 187.8669, 192.0432, 199.2016, 186.0264, 196.9588, 182.9614, 185.6195, 186.1854, 182.5744, 189.2615, 190.5903, 185.6840, 181.1060, 199.2016, 184.5512, 191.1032, 181.1596, 188.7989, 179.5910, 189.0403, 181.4413, 191.2164, 183.7941, 196.4866, 188.1267, 194.8895, 185.5468, 187.0525, 189.5253, 193.7413, 186.2492, 194.1238, 185.3780, 197.0361, 195.3124, 186.8723, 190.1731, 192.8159, 195.5262, 207.7338, 209.5670, 217.9491, 208.7346, 215.1275, 218.6320, 209.5395, 216.6376, 210.2725, 215.7759, 211.6703, 211.2948, 218.9418, 220.8164, 209.3557, 219.8461, 217.8943, 209.9206, 217.5068, 213.0977, 222.8006, 217.6526, 213.2932, 221.8752, 224.1396, 221.0913, 219.6372, 216.3757, 199.2016, 225.3120, 195.6897, 196.1935, 191.7074, 196.0796, 197.3392, 196.8349, 191.1928, 196.3375, 192.5089, 192.0215, 186.6560, 197.5585, 195.7916, 194.3221, 189.9061, 198.0617, 189.3401, 199.3354, 196.3427, 181.0000, 195.0000, 180.0000, 185.0000, 194.0000, 174.0000, 189.0000, 185.0000, 187.0000, 184.0000, 190.0000, 181.0000, 185.0000, 179.0000, 186.0000, 200.0000, 187.0000, 193.0000, 181.0000, 192.0000, 195.0000, 188.0000, 190.0000, 198.0000, 196.0000, 195.0000, 189.0000, 202.0000, 190.0000, 196.0000, 193.0000, 198.0000, 186.0000, 195.0000, 199.0000, 191.0000, 187.0000, 185.0000, 190.0000, 211.0000, 210.0000, 218.0000, 210.0000, 215.0000, 216.0000, 214.0000, 222.0000, 213.0000, 215.0000, 210.0000, 213.0000, 219.0000, 225.0000, 210.0000, 225.0000, 215.0000, 208.0000, 221.0000, 219.0000, 229.0000, 221.0000, 215.0000, 221.0000, 228.0000, 226.0000, 216.0000, 222.0000, 216.0000, 229.0000, 196.0000, 197.0000, 198.0000, 198.0000, 201.0000, 195.0000, 191.0000, 193.0000, 200.0000, 191.0000, 187.0000, 210.0000, 196.0000, 187.0000, 199.0000, 201.0000, 191.0000, 206.0000, 193.0000
#> 2 7.0000, 8.0000, 12.0000, 16.0000, 20.0000, 21.0000, 23.0000, 24.0000, 28.0000, 34.0000, 37.0000, 39.0000, 45.0000, 48.0000, 51.0000, 54.0000, 55.0000, 58.0000, 59.0000, 66.0000, 67.0000, 68.0000, 69.0000, 70.0000, 73.0000, 76.0000, 81.0000, 91.0000, 97.0000, 98.0000, 113.0000, 122.0000, 125.0000, 128.0000, 134.0000, 137.0000, 142.0000, 146.0000, 147.0000, 153.0000, 155.0000, 156.0000, 158.0000, 162.0000, 164.0000, 165.0000, 172.0000, 175.0000, 176.0000, 181.0000, 189.0000, 190.0000, 194.0000, 195.0000, 200.0000, 202.0000, 213.0000, 214.0000, 217.0000, 220.0000, 224.0000, 231.0000, 234.0000, 244.0000, 248.0000, 249.0000, 250.0000, 257.0000, 264.0000, 278.0000, 281.0000, 282.0000, 286.0000, 292.0000, 296.0000, 298.0000, 300.0000, 303.0000, 305.0000, 307.0000, 317.0000, 319.0000, 325.0000, 327.0000, 328.0000, 333.0000, 337.0000, 342.0000, 189.5218, 196.8688, 188.9551, 189.0987, 198.9836, 185.8345, 188.1753, 188.4888, 185.3262, 191.6482, 192.4002, 187.9641, 183.5776, 185.8633, 186.2850, 191.8691, 181.9773, 189.3560, 180.7433, 189.5547, 182.4399, 191.3590, 184.2765, 196.4251, 188.7196, 194.7687, 185.2444, 187.0971, 189.3466, 193.2344, 184.8254, 190.7205, 183.2511, 194.3437, 192.8871, 184.6354, 187.5260, 189.5212, 192.4671, 211.6176, 213.2759, 221.1825, 212.3408, 217.5583, 221.0956, 212.7162, 218.8771, 212.7122, 217.3344, 214.0735, 213.2059, 219.3502, 221.9387, 210.9036, 220.6444, 218.1986, 210.5174, 217.5384, 213.6284, 222.6259, 216.8963, 213.2222, 221.2507, 222.5755, 219.5285, 217.7857, 215.3284, 213.8251, 223.1414, 196.7617, 197.1608, 193.4466, 196.6632, 197.7938, 197.5209, 191.5147, 196.3596, 193.2141, 192.6171, 186.8793, 196.6643, 194.8827, 193.1489, 189.7722, 196.9364, 188.6178, 197.6688, 194.5465, 181.0000, 195.0000, 180.0000, 185.0000, 194.0000, 174.0000, 189.0000, 185.0000, 187.0000, 184.0000, 190.0000, 181.0000, 185.0000, 179.0000, 186.0000, 200.0000, 187.0000, 193.0000, 181.0000, 192.0000, 195.0000, 188.0000, 190.0000, 198.0000, 196.0000, 195.0000, 189.0000, 202.0000, 190.0000, 196.0000, 193.0000, 198.0000, 186.0000, 195.0000, 199.0000, 191.0000, 187.0000, 185.0000, 190.0000, 211.0000, 210.0000, 218.0000, 210.0000, 215.0000, 216.0000, 214.0000, 222.0000, 213.0000, 215.0000, 210.0000, 213.0000, 219.0000, 225.0000, 210.0000, 225.0000, 215.0000, 208.0000, 221.0000, 219.0000, 229.0000, 221.0000, 215.0000, 221.0000, 228.0000, 226.0000, 216.0000, 222.0000, 216.0000, 229.0000, 196.0000, 197.0000, 198.0000, 198.0000, 201.0000, 195.0000, 191.0000, 193.0000, 200.0000, 191.0000, 187.0000, 210.0000, 196.0000, 187.0000, 199.0000, 201.0000, 191.0000, 206.0000, 193.0000
#> 3 7.0000, 8.0000, 12.0000, 16.0000, 20.0000, 21.0000, 23.0000, 24.0000, 28.0000, 34.0000, 37.0000, 39.0000, 45.0000, 48.0000, 51.0000, 54.0000, 55.0000, 58.0000, 59.0000, 66.0000, 67.0000, 68.0000, 69.0000, 70.0000, 73.0000, 76.0000, 81.0000, 91.0000, 97.0000, 98.0000, 113.0000, 122.0000, 125.0000, 128.0000, 134.0000, 137.0000, 142.0000, 146.0000, 147.0000, 153.0000, 155.0000, 156.0000, 158.0000, 162.0000, 164.0000, 165.0000, 172.0000, 175.0000, 176.0000, 181.0000, 189.0000, 190.0000, 194.0000, 195.0000, 200.0000, 202.0000, 213.0000, 214.0000, 217.0000, 220.0000, 224.0000, 231.0000, 234.0000, 244.0000, 248.0000, 249.0000, 250.0000, 257.0000, 264.0000, 278.0000, 281.0000, 282.0000, 286.0000, 292.0000, 296.0000, 298.0000, 300.0000, 303.0000, 305.0000, 307.0000, 317.0000, 319.0000, 325.0000, 327.0000, 328.0000, 333.0000, 337.0000, 342.0000, 189.9048, 194.2886, 190.9770, 189.4922, 194.2738, 185.9112, 187.9399, 192.7283, 185.7787, 192.3283, 189.9291, 183.0143, 183.2186, 179.9147, 189.0308, 193.6553, 178.7251, 191.1883, 181.7281, 194.7663, 187.5335, 194.3881, 183.6765, 198.2678, 190.4242, 198.0223, 183.6812, 186.9577, 189.0008, 197.7844, 185.6674, 184.5248, 184.4439, 198.2052, 197.6661, 183.4531, 190.1205, 188.7622, 195.8741, 211.4196, 210.7997, 223.9478, 211.7155, 215.5880, 220.2050, 211.9746, 219.4080, 208.3590, 213.5141, 211.9041, 213.7954, 212.2755, 222.4096, 207.8762, 219.6517, 215.7569, 206.5719, 217.7903, 211.8860, 223.1645, 213.3289, 212.7841, 221.8175, 218.6116, 217.8674, 213.7977, 213.8273, 213.6562, 225.5332, 196.3536, 195.3528, 197.0791, 194.1319, 198.1736, 203.7517, 193.1242, 195.7094, 192.7435, 194.8915, 188.1405, 196.3724, 193.5201, 191.0911, 193.8611, 198.5183, 191.0793, 197.9701, 196.8503, 181.0000, 195.0000, 180.0000, 185.0000, 194.0000, 174.0000, 189.0000, 185.0000, 187.0000, 184.0000, 190.0000, 181.0000, 185.0000, 179.0000, 186.0000, 200.0000, 187.0000, 193.0000, 181.0000, 192.0000, 195.0000, 188.0000, 190.0000, 198.0000, 196.0000, 195.0000, 189.0000, 202.0000, 190.0000, 196.0000, 193.0000, 198.0000, 186.0000, 195.0000, 199.0000, 191.0000, 187.0000, 185.0000, 190.0000, 211.0000, 210.0000, 218.0000, 210.0000, 215.0000, 216.0000, 214.0000, 222.0000, 213.0000, 215.0000, 210.0000, 213.0000, 219.0000, 225.0000, 210.0000, 225.0000, 215.0000, 208.0000, 221.0000, 219.0000, 229.0000, 221.0000, 215.0000, 221.0000, 228.0000, 226.0000, 216.0000, 222.0000, 216.0000, 229.0000, 196.0000, 197.0000, 198.0000, 198.0000, 201.0000, 195.0000, 191.0000, 193.0000, 200.0000, 191.0000, 187.0000, 210.0000, 196.0000, 187.0000, 199.0000, 201.0000, 191.0000, 206.0000, 193.0000
#> 4 7.0000, 8.0000, 12.0000, 16.0000, 20.0000, 21.0000, 23.0000, 24.0000, 28.0000, 34.0000, 37.0000, 39.0000, 45.0000, 48.0000, 51.0000, 54.0000, 55.0000, 58.0000, 59.0000, 66.0000, 67.0000, 68.0000, 69.0000, 70.0000, 73.0000, 76.0000, 81.0000, 91.0000, 97.0000, 98.0000, 113.0000, 122.0000, 125.0000, 128.0000, 134.0000, 137.0000, 142.0000, 146.0000, 147.0000, 153.0000, 155.0000, 156.0000, 158.0000, 162.0000, 164.0000, 165.0000, 172.0000, 175.0000, 176.0000, 181.0000, 189.0000, 190.0000, 194.0000, 195.0000, 200.0000, 202.0000, 213.0000, 214.0000, 217.0000, 220.0000, 224.0000, 231.0000, 234.0000, 244.0000, 248.0000, 249.0000, 250.0000, 257.0000, 264.0000, 278.0000, 281.0000, 282.0000, 286.0000, 292.0000, 296.0000, 298.0000, 300.0000, 303.0000, 305.0000, 307.0000, 317.0000, 319.0000, 325.0000, 327.0000, 328.0000, 333.0000, 337.0000, 342.0000, 189.1916, 196.7313, 188.7090, 188.7829, 198.5505, 185.5951, 187.6491, 189.0061, 185.1877, 191.9487, 192.5176, 187.5458, 183.7324, 186.5906, 186.0832, 192.0156, 182.0335, 189.7566, 181.0586, 190.0257, 182.6527, 191.5771, 184.4506, 196.3630, 188.5165, 194.9324, 185.2735, 186.8578, 188.8919, 193.4443, 184.7391, 191.0343, 183.5681, 194.5497, 193.1015, 184.6373, 188.3133, 189.9928, 192.7186, 211.7254, 213.1870, 221.3186, 212.3658, 217.9336, 221.1429, 212.6841, 219.1934, 212.6108, 217.6843, 213.8984, 213.1117, 219.3804, 221.9344, 211.0123, 220.7588, 218.4717, 210.6467, 217.9589, 213.4785, 222.5473, 217.3009, 213.1382, 221.3629, 222.4353, 219.7524, 218.1254, 215.0150, 214.6533, 223.0539, 196.9919, 197.3525, 193.1210, 196.8729, 197.9374, 197.8114, 192.3394, 196.6360, 192.8916, 192.3664, 187.1514, 196.8941, 195.3068, 193.7530, 189.8951, 197.2130, 188.7883, 197.8433, 195.0739, 181.0000, 195.0000, 180.0000, 185.0000, 194.0000, 174.0000, 189.0000, 185.0000, 187.0000, 184.0000, 190.0000, 181.0000, 185.0000, 179.0000, 186.0000, 200.0000, 187.0000, 193.0000, 181.0000, 192.0000, 195.0000, 188.0000, 190.0000, 198.0000, 196.0000, 195.0000, 189.0000, 202.0000, 190.0000, 196.0000, 193.0000, 198.0000, 186.0000, 195.0000, 199.0000, 191.0000, 187.0000, 185.0000, 190.0000, 211.0000, 210.0000, 218.0000, 210.0000, 215.0000, 216.0000, 214.0000, 222.0000, 213.0000, 215.0000, 210.0000, 213.0000, 219.0000, 225.0000, 210.0000, 225.0000, 215.0000, 208.0000, 221.0000, 219.0000, 229.0000, 221.0000, 215.0000, 221.0000, 228.0000, 226.0000, 216.0000, 222.0000, 216.0000, 229.0000, 196.0000, 197.0000, 198.0000, 198.0000, 201.0000, 195.0000, 191.0000, 193.0000, 200.0000, 191.0000, 187.0000, 210.0000, 196.0000, 187.0000, 199.0000, 201.0000, 191.0000, 206.0000, 193.0000
#> 5 7.0000, 8.0000, 12.0000, 16.0000, 20.0000, 21.0000, 23.0000, 24.0000, 28.0000, 34.0000, 37.0000, 39.0000, 45.0000, 48.0000, 51.0000, 54.0000, 55.0000, 58.0000, 59.0000, 66.0000, 67.0000, 68.0000, 69.0000, 70.0000, 73.0000, 76.0000, 81.0000, 91.0000, 97.0000, 98.0000, 113.0000, 122.0000, 125.0000, 128.0000, 134.0000, 137.0000, 142.0000, 146.0000, 147.0000, 153.0000, 155.0000, 156.0000, 158.0000, 162.0000, 164.0000, 165.0000, 172.0000, 175.0000, 176.0000, 181.0000, 189.0000, 190.0000, 194.0000, 195.0000, 200.0000, 202.0000, 213.0000, 214.0000, 217.0000, 220.0000, 224.0000, 231.0000, 234.0000, 244.0000, 248.0000, 249.0000, 250.0000, 257.0000, 264.0000, 278.0000, 281.0000, 282.0000, 286.0000, 292.0000, 296.0000, 298.0000, 300.0000, 303.0000, 305.0000, 307.0000, 317.0000, 319.0000, 325.0000, 327.0000, 328.0000, 333.0000, 337.0000, 342.0000, 190.1454, 197.3961, 189.4068, 189.4747, 200.1010, 186.4578, 188.3517, 188.7262, 186.3896, 192.5208, 193.1283, 189.0809, 184.9354, 187.3961, 186.9285, 192.4510, 182.9926, 189.9027, 181.9362, 190.0691, 182.8272, 191.8331, 185.2462, 197.0956, 189.4361, 195.4725, 185.9281, 187.7364, 190.0930, 193.9365, 185.8130, 191.4492, 184.1294, 194.9276, 193.3704, 185.6569, 188.6032, 190.3842, 193.0853, 210.9462, 212.8538, 222.0071, 211.7285, 217.4273, 221.6547, 212.0627, 219.1034, 212.1209, 217.0912, 213.6548, 212.4778, 219.2121, 222.7683, 210.1715, 221.1187, 218.1104, 209.7982, 217.4901, 213.0440, 223.6214, 216.6113, 212.5924, 221.9401, 223.2478, 219.7924, 217.7033, 214.9484, 213.3573, 224.4161, 198.0555, 198.7953, 194.2389, 198.2039, 199.0740, 198.5880, 192.9757, 197.7527, 194.8837, 193.6517, 187.9031, 197.8525, 196.4725, 195.0879, 191.2306, 198.2996, 189.9347, 199.0973, 195.8149, 181.0000, 195.0000, 180.0000, 185.0000, 194.0000, 174.0000, 189.0000, 185.0000, 187.0000, 184.0000, 190.0000, 181.0000, 185.0000, 179.0000, 186.0000, 200.0000, 187.0000, 193.0000, 181.0000, 192.0000, 195.0000, 188.0000, 190.0000, 198.0000, 196.0000, 195.0000, 189.0000, 202.0000, 190.0000, 196.0000, 193.0000, 198.0000, 186.0000, 195.0000, 199.0000, 191.0000, 187.0000, 185.0000, 190.0000, 211.0000, 210.0000, 218.0000, 210.0000, 215.0000, 216.0000, 214.0000, 222.0000, 213.0000, 215.0000, 210.0000, 213.0000, 219.0000, 225.0000, 210.0000, 225.0000, 215.0000, 208.0000, 221.0000, 219.0000, 229.0000, 221.0000, 215.0000, 221.0000, 228.0000, 226.0000, 216.0000, 222.0000, 216.0000, 229.0000, 196.0000, 197.0000, 198.0000, 198.0000, 201.0000, 195.0000, 191.0000, 193.0000, 200.0000, 191.0000, 187.0000, 210.0000, 196.0000, 187.0000, 199.0000, 201.0000, 191.0000, 206.0000, 193.0000
#> last_name first_name id npreds colnames_pred_file
#> 1 lastname01 firstname01 00001 88
#> 2 lastname02 firstname02 00002 88
#> 3 lastname03 firstname03 00003 88
#> 4 lastname04 firstname04 00004 88
#> 5 lastname05 firstname05 00005 88
#> rmse_coef error_value id_is_seq_1_to_n
#> 1 rmse, standard, 5.84359599902686 5.843596 FALSE
#> 2 rmse, standard, 5.0617088172309 5.061709 FALSE
#> 3 rmse, standard, 5.35497882101587 5.354979 FALSE
#> 4 rmse, standard, 5.05858144846118 5.058581 FALSE
#> 5 rmse, standard, 4.96250723801749 4.962507 FALSE
5 Add list column 2
df |>
mutate(id_is_seq_1_to_n = map_lgl(data, ~ identical(.x$id, 1:88)))
#> csv_file_name
#> 1 person01.csv
#> 2 person02.csv
#> 3 person03.csv
#> 4 person04.csv
#> 5 person05.csv
#> data
#> 1 7.0000, 8.0000, 12.0000, 16.0000, 20.0000, 21.0000, 23.0000, 24.0000, 28.0000, 34.0000, 37.0000, 39.0000, 45.0000, 48.0000, 51.0000, 54.0000, 55.0000, 58.0000, 59.0000, 66.0000, 67.0000, 68.0000, 69.0000, 70.0000, 73.0000, 76.0000, 81.0000, 91.0000, 97.0000, 98.0000, 113.0000, 122.0000, 125.0000, 128.0000, 134.0000, 137.0000, 142.0000, 146.0000, 147.0000, 153.0000, 155.0000, 156.0000, 158.0000, 162.0000, 164.0000, 165.0000, 172.0000, 175.0000, 176.0000, 181.0000, 189.0000, 190.0000, 194.0000, 195.0000, 200.0000, 202.0000, 213.0000, 214.0000, 217.0000, 220.0000, 224.0000, 231.0000, 234.0000, 244.0000, 248.0000, 249.0000, 250.0000, 257.0000, 264.0000, 278.0000, 281.0000, 282.0000, 286.0000, 292.0000, 296.0000, 298.0000, 300.0000, 303.0000, 305.0000, 307.0000, 317.0000, 319.0000, 325.0000, 327.0000, 328.0000, 333.0000, 337.0000, 342.0000, 187.8669, 192.0432, 199.2016, 186.0264, 196.9588, 182.9614, 185.6195, 186.1854, 182.5744, 189.2615, 190.5903, 185.6840, 181.1060, 199.2016, 184.5512, 191.1032, 181.1596, 188.7989, 179.5910, 189.0403, 181.4413, 191.2164, 183.7941, 196.4866, 188.1267, 194.8895, 185.5468, 187.0525, 189.5253, 193.7413, 186.2492, 194.1238, 185.3780, 197.0361, 195.3124, 186.8723, 190.1731, 192.8159, 195.5262, 207.7338, 209.5670, 217.9491, 208.7346, 215.1275, 218.6320, 209.5395, 216.6376, 210.2725, 215.7759, 211.6703, 211.2948, 218.9418, 220.8164, 209.3557, 219.8461, 217.8943, 209.9206, 217.5068, 213.0977, 222.8006, 217.6526, 213.2932, 221.8752, 224.1396, 221.0913, 219.6372, 216.3757, 199.2016, 225.3120, 195.6897, 196.1935, 191.7074, 196.0796, 197.3392, 196.8349, 191.1928, 196.3375, 192.5089, 192.0215, 186.6560, 197.5585, 195.7916, 194.3221, 189.9061, 198.0617, 189.3401, 199.3354, 196.3427, 181.0000, 195.0000, 180.0000, 185.0000, 194.0000, 174.0000, 189.0000, 185.0000, 187.0000, 184.0000, 190.0000, 181.0000, 185.0000, 179.0000, 186.0000, 200.0000, 187.0000, 193.0000, 181.0000, 192.0000, 195.0000, 188.0000, 190.0000, 198.0000, 196.0000, 195.0000, 189.0000, 202.0000, 190.0000, 196.0000, 193.0000, 198.0000, 186.0000, 195.0000, 199.0000, 191.0000, 187.0000, 185.0000, 190.0000, 211.0000, 210.0000, 218.0000, 210.0000, 215.0000, 216.0000, 214.0000, 222.0000, 213.0000, 215.0000, 210.0000, 213.0000, 219.0000, 225.0000, 210.0000, 225.0000, 215.0000, 208.0000, 221.0000, 219.0000, 229.0000, 221.0000, 215.0000, 221.0000, 228.0000, 226.0000, 216.0000, 222.0000, 216.0000, 229.0000, 196.0000, 197.0000, 198.0000, 198.0000, 201.0000, 195.0000, 191.0000, 193.0000, 200.0000, 191.0000, 187.0000, 210.0000, 196.0000, 187.0000, 199.0000, 201.0000, 191.0000, 206.0000, 193.0000
#> 2 7.0000, 8.0000, 12.0000, 16.0000, 20.0000, 21.0000, 23.0000, 24.0000, 28.0000, 34.0000, 37.0000, 39.0000, 45.0000, 48.0000, 51.0000, 54.0000, 55.0000, 58.0000, 59.0000, 66.0000, 67.0000, 68.0000, 69.0000, 70.0000, 73.0000, 76.0000, 81.0000, 91.0000, 97.0000, 98.0000, 113.0000, 122.0000, 125.0000, 128.0000, 134.0000, 137.0000, 142.0000, 146.0000, 147.0000, 153.0000, 155.0000, 156.0000, 158.0000, 162.0000, 164.0000, 165.0000, 172.0000, 175.0000, 176.0000, 181.0000, 189.0000, 190.0000, 194.0000, 195.0000, 200.0000, 202.0000, 213.0000, 214.0000, 217.0000, 220.0000, 224.0000, 231.0000, 234.0000, 244.0000, 248.0000, 249.0000, 250.0000, 257.0000, 264.0000, 278.0000, 281.0000, 282.0000, 286.0000, 292.0000, 296.0000, 298.0000, 300.0000, 303.0000, 305.0000, 307.0000, 317.0000, 319.0000, 325.0000, 327.0000, 328.0000, 333.0000, 337.0000, 342.0000, 189.5218, 196.8688, 188.9551, 189.0987, 198.9836, 185.8345, 188.1753, 188.4888, 185.3262, 191.6482, 192.4002, 187.9641, 183.5776, 185.8633, 186.2850, 191.8691, 181.9773, 189.3560, 180.7433, 189.5547, 182.4399, 191.3590, 184.2765, 196.4251, 188.7196, 194.7687, 185.2444, 187.0971, 189.3466, 193.2344, 184.8254, 190.7205, 183.2511, 194.3437, 192.8871, 184.6354, 187.5260, 189.5212, 192.4671, 211.6176, 213.2759, 221.1825, 212.3408, 217.5583, 221.0956, 212.7162, 218.8771, 212.7122, 217.3344, 214.0735, 213.2059, 219.3502, 221.9387, 210.9036, 220.6444, 218.1986, 210.5174, 217.5384, 213.6284, 222.6259, 216.8963, 213.2222, 221.2507, 222.5755, 219.5285, 217.7857, 215.3284, 213.8251, 223.1414, 196.7617, 197.1608, 193.4466, 196.6632, 197.7938, 197.5209, 191.5147, 196.3596, 193.2141, 192.6171, 186.8793, 196.6643, 194.8827, 193.1489, 189.7722, 196.9364, 188.6178, 197.6688, 194.5465, 181.0000, 195.0000, 180.0000, 185.0000, 194.0000, 174.0000, 189.0000, 185.0000, 187.0000, 184.0000, 190.0000, 181.0000, 185.0000, 179.0000, 186.0000, 200.0000, 187.0000, 193.0000, 181.0000, 192.0000, 195.0000, 188.0000, 190.0000, 198.0000, 196.0000, 195.0000, 189.0000, 202.0000, 190.0000, 196.0000, 193.0000, 198.0000, 186.0000, 195.0000, 199.0000, 191.0000, 187.0000, 185.0000, 190.0000, 211.0000, 210.0000, 218.0000, 210.0000, 215.0000, 216.0000, 214.0000, 222.0000, 213.0000, 215.0000, 210.0000, 213.0000, 219.0000, 225.0000, 210.0000, 225.0000, 215.0000, 208.0000, 221.0000, 219.0000, 229.0000, 221.0000, 215.0000, 221.0000, 228.0000, 226.0000, 216.0000, 222.0000, 216.0000, 229.0000, 196.0000, 197.0000, 198.0000, 198.0000, 201.0000, 195.0000, 191.0000, 193.0000, 200.0000, 191.0000, 187.0000, 210.0000, 196.0000, 187.0000, 199.0000, 201.0000, 191.0000, 206.0000, 193.0000
#> 3 7.0000, 8.0000, 12.0000, 16.0000, 20.0000, 21.0000, 23.0000, 24.0000, 28.0000, 34.0000, 37.0000, 39.0000, 45.0000, 48.0000, 51.0000, 54.0000, 55.0000, 58.0000, 59.0000, 66.0000, 67.0000, 68.0000, 69.0000, 70.0000, 73.0000, 76.0000, 81.0000, 91.0000, 97.0000, 98.0000, 113.0000, 122.0000, 125.0000, 128.0000, 134.0000, 137.0000, 142.0000, 146.0000, 147.0000, 153.0000, 155.0000, 156.0000, 158.0000, 162.0000, 164.0000, 165.0000, 172.0000, 175.0000, 176.0000, 181.0000, 189.0000, 190.0000, 194.0000, 195.0000, 200.0000, 202.0000, 213.0000, 214.0000, 217.0000, 220.0000, 224.0000, 231.0000, 234.0000, 244.0000, 248.0000, 249.0000, 250.0000, 257.0000, 264.0000, 278.0000, 281.0000, 282.0000, 286.0000, 292.0000, 296.0000, 298.0000, 300.0000, 303.0000, 305.0000, 307.0000, 317.0000, 319.0000, 325.0000, 327.0000, 328.0000, 333.0000, 337.0000, 342.0000, 189.9048, 194.2886, 190.9770, 189.4922, 194.2738, 185.9112, 187.9399, 192.7283, 185.7787, 192.3283, 189.9291, 183.0143, 183.2186, 179.9147, 189.0308, 193.6553, 178.7251, 191.1883, 181.7281, 194.7663, 187.5335, 194.3881, 183.6765, 198.2678, 190.4242, 198.0223, 183.6812, 186.9577, 189.0008, 197.7844, 185.6674, 184.5248, 184.4439, 198.2052, 197.6661, 183.4531, 190.1205, 188.7622, 195.8741, 211.4196, 210.7997, 223.9478, 211.7155, 215.5880, 220.2050, 211.9746, 219.4080, 208.3590, 213.5141, 211.9041, 213.7954, 212.2755, 222.4096, 207.8762, 219.6517, 215.7569, 206.5719, 217.7903, 211.8860, 223.1645, 213.3289, 212.7841, 221.8175, 218.6116, 217.8674, 213.7977, 213.8273, 213.6562, 225.5332, 196.3536, 195.3528, 197.0791, 194.1319, 198.1736, 203.7517, 193.1242, 195.7094, 192.7435, 194.8915, 188.1405, 196.3724, 193.5201, 191.0911, 193.8611, 198.5183, 191.0793, 197.9701, 196.8503, 181.0000, 195.0000, 180.0000, 185.0000, 194.0000, 174.0000, 189.0000, 185.0000, 187.0000, 184.0000, 190.0000, 181.0000, 185.0000, 179.0000, 186.0000, 200.0000, 187.0000, 193.0000, 181.0000, 192.0000, 195.0000, 188.0000, 190.0000, 198.0000, 196.0000, 195.0000, 189.0000, 202.0000, 190.0000, 196.0000, 193.0000, 198.0000, 186.0000, 195.0000, 199.0000, 191.0000, 187.0000, 185.0000, 190.0000, 211.0000, 210.0000, 218.0000, 210.0000, 215.0000, 216.0000, 214.0000, 222.0000, 213.0000, 215.0000, 210.0000, 213.0000, 219.0000, 225.0000, 210.0000, 225.0000, 215.0000, 208.0000, 221.0000, 219.0000, 229.0000, 221.0000, 215.0000, 221.0000, 228.0000, 226.0000, 216.0000, 222.0000, 216.0000, 229.0000, 196.0000, 197.0000, 198.0000, 198.0000, 201.0000, 195.0000, 191.0000, 193.0000, 200.0000, 191.0000, 187.0000, 210.0000, 196.0000, 187.0000, 199.0000, 201.0000, 191.0000, 206.0000, 193.0000
#> 4 7.0000, 8.0000, 12.0000, 16.0000, 20.0000, 21.0000, 23.0000, 24.0000, 28.0000, 34.0000, 37.0000, 39.0000, 45.0000, 48.0000, 51.0000, 54.0000, 55.0000, 58.0000, 59.0000, 66.0000, 67.0000, 68.0000, 69.0000, 70.0000, 73.0000, 76.0000, 81.0000, 91.0000, 97.0000, 98.0000, 113.0000, 122.0000, 125.0000, 128.0000, 134.0000, 137.0000, 142.0000, 146.0000, 147.0000, 153.0000, 155.0000, 156.0000, 158.0000, 162.0000, 164.0000, 165.0000, 172.0000, 175.0000, 176.0000, 181.0000, 189.0000, 190.0000, 194.0000, 195.0000, 200.0000, 202.0000, 213.0000, 214.0000, 217.0000, 220.0000, 224.0000, 231.0000, 234.0000, 244.0000, 248.0000, 249.0000, 250.0000, 257.0000, 264.0000, 278.0000, 281.0000, 282.0000, 286.0000, 292.0000, 296.0000, 298.0000, 300.0000, 303.0000, 305.0000, 307.0000, 317.0000, 319.0000, 325.0000, 327.0000, 328.0000, 333.0000, 337.0000, 342.0000, 189.1916, 196.7313, 188.7090, 188.7829, 198.5505, 185.5951, 187.6491, 189.0061, 185.1877, 191.9487, 192.5176, 187.5458, 183.7324, 186.5906, 186.0832, 192.0156, 182.0335, 189.7566, 181.0586, 190.0257, 182.6527, 191.5771, 184.4506, 196.3630, 188.5165, 194.9324, 185.2735, 186.8578, 188.8919, 193.4443, 184.7391, 191.0343, 183.5681, 194.5497, 193.1015, 184.6373, 188.3133, 189.9928, 192.7186, 211.7254, 213.1870, 221.3186, 212.3658, 217.9336, 221.1429, 212.6841, 219.1934, 212.6108, 217.6843, 213.8984, 213.1117, 219.3804, 221.9344, 211.0123, 220.7588, 218.4717, 210.6467, 217.9589, 213.4785, 222.5473, 217.3009, 213.1382, 221.3629, 222.4353, 219.7524, 218.1254, 215.0150, 214.6533, 223.0539, 196.9919, 197.3525, 193.1210, 196.8729, 197.9374, 197.8114, 192.3394, 196.6360, 192.8916, 192.3664, 187.1514, 196.8941, 195.3068, 193.7530, 189.8951, 197.2130, 188.7883, 197.8433, 195.0739, 181.0000, 195.0000, 180.0000, 185.0000, 194.0000, 174.0000, 189.0000, 185.0000, 187.0000, 184.0000, 190.0000, 181.0000, 185.0000, 179.0000, 186.0000, 200.0000, 187.0000, 193.0000, 181.0000, 192.0000, 195.0000, 188.0000, 190.0000, 198.0000, 196.0000, 195.0000, 189.0000, 202.0000, 190.0000, 196.0000, 193.0000, 198.0000, 186.0000, 195.0000, 199.0000, 191.0000, 187.0000, 185.0000, 190.0000, 211.0000, 210.0000, 218.0000, 210.0000, 215.0000, 216.0000, 214.0000, 222.0000, 213.0000, 215.0000, 210.0000, 213.0000, 219.0000, 225.0000, 210.0000, 225.0000, 215.0000, 208.0000, 221.0000, 219.0000, 229.0000, 221.0000, 215.0000, 221.0000, 228.0000, 226.0000, 216.0000, 222.0000, 216.0000, 229.0000, 196.0000, 197.0000, 198.0000, 198.0000, 201.0000, 195.0000, 191.0000, 193.0000, 200.0000, 191.0000, 187.0000, 210.0000, 196.0000, 187.0000, 199.0000, 201.0000, 191.0000, 206.0000, 193.0000
#> 5 7.0000, 8.0000, 12.0000, 16.0000, 20.0000, 21.0000, 23.0000, 24.0000, 28.0000, 34.0000, 37.0000, 39.0000, 45.0000, 48.0000, 51.0000, 54.0000, 55.0000, 58.0000, 59.0000, 66.0000, 67.0000, 68.0000, 69.0000, 70.0000, 73.0000, 76.0000, 81.0000, 91.0000, 97.0000, 98.0000, 113.0000, 122.0000, 125.0000, 128.0000, 134.0000, 137.0000, 142.0000, 146.0000, 147.0000, 153.0000, 155.0000, 156.0000, 158.0000, 162.0000, 164.0000, 165.0000, 172.0000, 175.0000, 176.0000, 181.0000, 189.0000, 190.0000, 194.0000, 195.0000, 200.0000, 202.0000, 213.0000, 214.0000, 217.0000, 220.0000, 224.0000, 231.0000, 234.0000, 244.0000, 248.0000, 249.0000, 250.0000, 257.0000, 264.0000, 278.0000, 281.0000, 282.0000, 286.0000, 292.0000, 296.0000, 298.0000, 300.0000, 303.0000, 305.0000, 307.0000, 317.0000, 319.0000, 325.0000, 327.0000, 328.0000, 333.0000, 337.0000, 342.0000, 190.1454, 197.3961, 189.4068, 189.4747, 200.1010, 186.4578, 188.3517, 188.7262, 186.3896, 192.5208, 193.1283, 189.0809, 184.9354, 187.3961, 186.9285, 192.4510, 182.9926, 189.9027, 181.9362, 190.0691, 182.8272, 191.8331, 185.2462, 197.0956, 189.4361, 195.4725, 185.9281, 187.7364, 190.0930, 193.9365, 185.8130, 191.4492, 184.1294, 194.9276, 193.3704, 185.6569, 188.6032, 190.3842, 193.0853, 210.9462, 212.8538, 222.0071, 211.7285, 217.4273, 221.6547, 212.0627, 219.1034, 212.1209, 217.0912, 213.6548, 212.4778, 219.2121, 222.7683, 210.1715, 221.1187, 218.1104, 209.7982, 217.4901, 213.0440, 223.6214, 216.6113, 212.5924, 221.9401, 223.2478, 219.7924, 217.7033, 214.9484, 213.3573, 224.4161, 198.0555, 198.7953, 194.2389, 198.2039, 199.0740, 198.5880, 192.9757, 197.7527, 194.8837, 193.6517, 187.9031, 197.8525, 196.4725, 195.0879, 191.2306, 198.2996, 189.9347, 199.0973, 195.8149, 181.0000, 195.0000, 180.0000, 185.0000, 194.0000, 174.0000, 189.0000, 185.0000, 187.0000, 184.0000, 190.0000, 181.0000, 185.0000, 179.0000, 186.0000, 200.0000, 187.0000, 193.0000, 181.0000, 192.0000, 195.0000, 188.0000, 190.0000, 198.0000, 196.0000, 195.0000, 189.0000, 202.0000, 190.0000, 196.0000, 193.0000, 198.0000, 186.0000, 195.0000, 199.0000, 191.0000, 187.0000, 185.0000, 190.0000, 211.0000, 210.0000, 218.0000, 210.0000, 215.0000, 216.0000, 214.0000, 222.0000, 213.0000, 215.0000, 210.0000, 213.0000, 219.0000, 225.0000, 210.0000, 225.0000, 215.0000, 208.0000, 221.0000, 219.0000, 229.0000, 221.0000, 215.0000, 221.0000, 228.0000, 226.0000, 216.0000, 222.0000, 216.0000, 229.0000, 196.0000, 197.0000, 198.0000, 198.0000, 201.0000, 195.0000, 191.0000, 193.0000, 200.0000, 191.0000, 187.0000, 210.0000, 196.0000, 187.0000, 199.0000, 201.0000, 191.0000, 206.0000, 193.0000
#> last_name first_name id npreds colnames_pred_file
#> 1 lastname01 firstname01 00001 88
#> 2 lastname02 firstname02 00002 88
#> 3 lastname03 firstname03 00003 88
#> 4 lastname04 firstname04 00004 88
#> 5 lastname05 firstname05 00005 88
#> rmse_coef error_value id_is_seq_1_to_n
#> 1 rmse, standard, 5.84359599902686 5.843596 FALSE
#> 2 rmse, standard, 5.0617088172309 5.061709 FALSE
#> 3 rmse, standard, 5.35497882101587 5.354979 FALSE
#> 4 rmse, standard, 5.05858144846118 5.058581 FALSE
#> 5 rmse, standard, 4.96250723801749 4.962507 FALSE
6 Extract list column
If we pull the list columns data
, we will get a list of data frames:
df |>
pull(data) |>
str()
#> List of 5
#> $ :Classes 'data.table' and 'data.frame': 88 obs. of 3 variables:
#> ..$ id : int [1:88] 7 8 12 16 20 21 23 24 28 34 ...
#> ..$ pred: num [1:88] 188 192 199 186 197 ...
#> ..$ y : num [1:88] 181 195 180 185 194 174 189 185 187 184 ...
#> ..- attr(*, ".internal.selfref")=<externalptr>
#> $ :Classes 'data.table' and 'data.frame': 88 obs. of 3 variables:
#> ..$ id : int [1:88] 7 8 12 16 20 21 23 24 28 34 ...
#> ..$ pred: num [1:88] 190 197 189 189 199 ...
#> ..$ y : num [1:88] 181 195 180 185 194 174 189 185 187 184 ...
#> ..- attr(*, ".internal.selfref")=<externalptr>
#> $ :Classes 'data.table' and 'data.frame': 88 obs. of 3 variables:
#> ..$ id : int [1:88] 7 8 12 16 20 21 23 24 28 34 ...
#> ..$ pred: num [1:88] 190 194 191 189 194 ...
#> ..$ y : num [1:88] 181 195 180 185 194 174 189 185 187 184 ...
#> ..- attr(*, ".internal.selfref")=<externalptr>
#> $ :Classes 'data.table' and 'data.frame': 88 obs. of 3 variables:
#> ..$ id : int [1:88] 7 8 12 16 20 21 23 24 28 34 ...
#> ..$ pred: num [1:88] 189 197 189 189 199 ...
#> ..$ y : num [1:88] 181 195 180 185 194 174 189 185 187 184 ...
#> ..- attr(*, ".internal.selfref")=<externalptr>
#> $ :Classes 'data.table' and 'data.frame': 88 obs. of 3 variables:
#> ..$ id : int [1:88] 7 8 12 16 20 21 23 24 28 34 ...
#> ..$ pred: num [1:88] 190 197 189 189 200 ...
#> ..$ y : num [1:88] 181 195 180 185 194 174 189 185 187 184 ...
#> ..- attr(*, ".internal.selfref")=<externalptr>
Same thing using the dollar operator:
df$data |>
str()
#> List of 5
#> $ :Classes 'data.table' and 'data.frame': 88 obs. of 3 variables:
#> ..$ id : int [1:88] 7 8 12 16 20 21 23 24 28 34 ...
#> ..$ pred: num [1:88] 188 192 199 186 197 ...
#> ..$ y : num [1:88] 181 195 180 185 194 174 189 185 187 184 ...
#> ..- attr(*, ".internal.selfref")=<externalptr>
#> $ :Classes 'data.table' and 'data.frame': 88 obs. of 3 variables:
#> ..$ id : int [1:88] 7 8 12 16 20 21 23 24 28 34 ...
#> ..$ pred: num [1:88] 190 197 189 189 199 ...
#> ..$ y : num [1:88] 181 195 180 185 194 174 189 185 187 184 ...
#> ..- attr(*, ".internal.selfref")=<externalptr>
#> $ :Classes 'data.table' and 'data.frame': 88 obs. of 3 variables:
#> ..$ id : int [1:88] 7 8 12 16 20 21 23 24 28 34 ...
#> ..$ pred: num [1:88] 190 194 191 189 194 ...
#> ..$ y : num [1:88] 181 195 180 185 194 174 189 185 187 184 ...
#> ..- attr(*, ".internal.selfref")=<externalptr>
#> $ :Classes 'data.table' and 'data.frame': 88 obs. of 3 variables:
#> ..$ id : int [1:88] 7 8 12 16 20 21 23 24 28 34 ...
#> ..$ pred: num [1:88] 189 197 189 189 199 ...
#> ..$ y : num [1:88] 181 195 180 185 194 174 189 185 187 184 ...
#> ..- attr(*, ".internal.selfref")=<externalptr>
#> $ :Classes 'data.table' and 'data.frame': 88 obs. of 3 variables:
#> ..$ id : int [1:88] 7 8 12 16 20 21 23 24 28 34 ...
#> ..$ pred: num [1:88] 190 197 189 189 200 ...
#> ..$ y : num [1:88] 181 195 180 185 194 174 189 185 187 184 ...
#> ..- attr(*, ".internal.selfref")=<externalptr>
Or double brackets:
df[["data"]] |>
str()
#> List of 5
#> $ :Classes 'data.table' and 'data.frame': 88 obs. of 3 variables:
#> ..$ id : int [1:88] 7 8 12 16 20 21 23 24 28 34 ...
#> ..$ pred: num [1:88] 188 192 199 186 197 ...
#> ..$ y : num [1:88] 181 195 180 185 194 174 189 185 187 184 ...
#> ..- attr(*, ".internal.selfref")=<externalptr>
#> $ :Classes 'data.table' and 'data.frame': 88 obs. of 3 variables:
#> ..$ id : int [1:88] 7 8 12 16 20 21 23 24 28 34 ...
#> ..$ pred: num [1:88] 190 197 189 189 199 ...
#> ..$ y : num [1:88] 181 195 180 185 194 174 189 185 187 184 ...
#> ..- attr(*, ".internal.selfref")=<externalptr>
#> $ :Classes 'data.table' and 'data.frame': 88 obs. of 3 variables:
#> ..$ id : int [1:88] 7 8 12 16 20 21 23 24 28 34 ...
#> ..$ pred: num [1:88] 190 194 191 189 194 ...
#> ..$ y : num [1:88] 181 195 180 185 194 174 189 185 187 184 ...
#> ..- attr(*, ".internal.selfref")=<externalptr>
#> $ :Classes 'data.table' and 'data.frame': 88 obs. of 3 variables:
#> ..$ id : int [1:88] 7 8 12 16 20 21 23 24 28 34 ...
#> ..$ pred: num [1:88] 189 197 189 189 199 ...
#> ..$ y : num [1:88] 181 195 180 185 194 174 189 185 187 184 ...
#> ..- attr(*, ".internal.selfref")=<externalptr>
#> $ :Classes 'data.table' and 'data.frame': 88 obs. of 3 variables:
#> ..$ id : int [1:88] 7 8 12 16 20 21 23 24 28 34 ...
#> ..$ pred: num [1:88] 190 197 189 189 200 ...
#> ..$ y : num [1:88] 181 195 180 185 194 174 189 185 187 184 ...
#> ..- attr(*, ".internal.selfref")=<externalptr>
Pulling only the n-th element can be achieved like this:
df$data[[1]] |>
str()
#> Classes 'data.table' and 'data.frame': 88 obs. of 3 variables:
#> $ id : int 7 8 12 16 20 21 23 24 28 34 ...
#> $ pred: num 188 192 199 186 197 ...
#> $ y : num 181 195 180 185 194 174 189 185 187 184 ...
#> - attr(*, ".internal.selfref")=<externalptr>
7 Reproducibility
#> ─ Session info ───────────────────────────────────────────────────────────────────────────────────────────────────────
#> setting value
#> version R version 4.4.1 (2024-06-14)
#> os macOS 15.0.1
#> system x86_64, darwin20
#> ui X11
#> language (EN)
#> collate en_US.UTF-8
#> ctype en_US.UTF-8
#> tz Europe/Berlin
#> date 2024-10-13
#> pandoc 3.4 @ /usr/local/bin/ (via rmarkdown)
#>
#> ─ Packages ───────────────────────────────────────────────────────────────────────────────────────────────────────────
#> package * version date (UTC) lib source
#> blogdown 1.19 2024-02-01 [1] CRAN (R 4.4.0)
#> bookdown 0.40 2024-07-02 [1] CRAN (R 4.4.0)
#> bslib 0.8.0 2024-07-29 [1] CRAN (R 4.4.0)
#> cachem 1.1.0 2024-05-16 [1] CRAN (R 4.4.0)
#> cli 3.6.3 2024-06-21 [1] CRAN (R 4.4.0)
#> codetools 0.2-20 2024-03-31 [2] CRAN (R 4.4.1)
#> colorspace 2.1-1 2024-07-26 [1] CRAN (R 4.4.0)
#> devtools 2.4.5 2022-10-11 [1] CRAN (R 4.4.0)
#> digest 0.6.37 2024-08-19 [1] CRAN (R 4.4.1)
#> dplyr * 1.1.4 2023-11-17 [1] CRAN (R 4.4.0)
#> ellipsis 0.3.2 2021-04-29 [1] CRAN (R 4.4.0)
#> evaluate 0.24.0 2024-06-10 [1] CRAN (R 4.4.0)
#> fansi 1.0.6 2023-12-08 [1] CRAN (R 4.4.0)
#> fastmap 1.2.0 2024-05-15 [1] CRAN (R 4.4.0)
#> forcats * 1.0.0 2023-01-29 [1] CRAN (R 4.4.0)
#> fs 1.6.4 2024-04-25 [1] CRAN (R 4.4.0)
#> generics 0.1.3 2022-07-05 [1] CRAN (R 4.4.0)
#> ggplot2 * 3.5.1 2024-04-23 [1] CRAN (R 4.4.0)
#> glue 1.8.0 2024-09-30 [1] CRAN (R 4.4.1)
#> gtable 0.3.5 2024-04-22 [1] CRAN (R 4.4.0)
#> hms 1.1.3 2023-03-21 [1] CRAN (R 4.4.0)
#> htmltools 0.5.8.1 2024-04-04 [1] CRAN (R 4.4.0)
#> htmlwidgets 1.6.4 2023-12-06 [1] CRAN (R 4.4.0)
#> httpuv 1.6.15 2024-03-26 [1] CRAN (R 4.4.0)
#> jquerylib 0.1.4 2021-04-26 [1] CRAN (R 4.4.0)
#> jsonlite 1.8.8 2023-12-04 [1] CRAN (R 4.4.0)
#> knitr 1.48 2024-07-07 [1] CRAN (R 4.4.0)
#> later 1.3.2 2023-12-06 [1] CRAN (R 4.4.0)
#> lifecycle 1.0.4 2023-11-07 [1] CRAN (R 4.4.0)
#> lubridate * 1.9.3 2023-09-27 [1] CRAN (R 4.4.0)
#> magrittr 2.0.3 2022-03-30 [1] CRAN (R 4.4.0)
#> memoise 2.0.1 2021-11-26 [1] CRAN (R 4.4.0)
#> mime 0.12 2021-09-28 [1] CRAN (R 4.4.0)
#> miniUI 0.1.1.1 2018-05-18 [1] CRAN (R 4.4.0)
#> munsell 0.5.1 2024-04-01 [1] CRAN (R 4.4.0)
#> pillar 1.9.0 2023-03-22 [1] CRAN (R 4.4.0)
#> pkgbuild 1.4.4 2024-03-17 [1] CRAN (R 4.4.0)
#> pkgconfig 2.0.3 2019-09-22 [1] CRAN (R 4.4.0)
#> pkgload 1.4.0 2024-06-28 [1] CRAN (R 4.4.0)
#> profvis 0.4.0 2024-09-20 [1] CRAN (R 4.4.1)
#> promises 1.3.0 2024-04-05 [1] CRAN (R 4.4.0)
#> purrr * 1.0.2 2023-08-10 [1] CRAN (R 4.4.0)
#> R6 2.5.1 2021-08-19 [1] CRAN (R 4.4.0)
#> Rcpp 1.0.13 2024-07-17 [1] CRAN (R 4.4.0)
#> readr * 2.1.5 2024-01-10 [1] CRAN (R 4.4.0)
#> remotes 2.5.0 2024-03-17 [1] CRAN (R 4.4.0)
#> rlang 1.1.4 2024-06-04 [1] CRAN (R 4.4.0)
#> rmarkdown 2.28 2024-08-17 [1] CRAN (R 4.4.1)
#> rstudioapi 0.16.0 2024-03-24 [1] CRAN (R 4.4.0)
#> sass 0.4.9 2024-03-15 [1] CRAN (R 4.4.0)
#> scales 1.3.0 2023-11-28 [1] CRAN (R 4.4.0)
#> sessioninfo 1.2.2 2021-12-06 [1] CRAN (R 4.4.0)
#> shiny 1.9.1 2024-08-01 [1] CRAN (R 4.4.0)
#> stringi 1.8.4 2024-05-06 [1] CRAN (R 4.4.0)
#> stringr * 1.5.1 2023-11-14 [1] CRAN (R 4.4.0)
#> tibble * 3.2.1 2023-03-20 [1] CRAN (R 4.4.0)
#> tidyr * 1.3.1 2024-01-24 [1] CRAN (R 4.4.0)
#> tidyselect 1.2.1 2024-03-11 [1] CRAN (R 4.4.0)
#> tidyverse * 2.0.0 2023-02-22 [1] CRAN (R 4.4.0)
#> timechange 0.3.0 2024-01-18 [1] CRAN (R 4.4.0)
#> tzdb 0.4.0 2023-05-12 [1] CRAN (R 4.4.0)
#> urlchecker 1.0.1 2021-11-30 [1] CRAN (R 4.4.0)
#> usethis 3.0.0 2024-07-29 [1] CRAN (R 4.4.0)
#> utf8 1.2.4 2023-10-22 [1] CRAN (R 4.4.0)
#> vctrs 0.6.5 2023-12-01 [1] CRAN (R 4.4.0)
#> withr 3.0.1 2024-07-31 [1] CRAN (R 4.4.0)
#> xfun 0.48 2024-10-03 [1] CRAN (R 4.4.1)
#> xtable 1.8-4 2019-04-21 [1] CRAN (R 4.4.0)
#> yaml 2.3.10 2024-07-26 [1] CRAN (R 4.4.0)
#>
#> [1] /Users/sebastiansaueruser/Library/R/x86_64/4.4/library
#> [2] /Library/Frameworks/R.framework/Versions/4.4-x86_64/Resources/library
#>
#> ──────────────────────────────────────────────────────────────────────────────────────────────────────────────────────