1 Motivation
Often times, in explorative data analysis, one would like to plot the distribution of the relevant variables. Whereas ggplot provides handy tools to plot one variable after each other, it would come handy to plot ’em all in one go.
Of course, there are many ways to achieve this comfort. This posts presents some of them in brevity.
2 Load packages
library(tidyverse) # data wrangling
3 Load data
Demo data.
d_path <- "https://raw.githubusercontent.com/sebastiansauer/pradadata/master/data-raw/extra.csv"
d <- read_csv(d_path)
head(d)
#> # A tibble: 6 × 34
#> timestamp code i01 i02r i03 i04 i05 i06r i07 i08 i09 i10
#> <chr> <chr> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl>
#> 1 11.03.2015 … HSC 3 3 3 3 4 4 3 2 3 1
#> 2 11.03.2015 … ERB 2 2 1 2 3 2 2 3 3 1
#> 3 11.03.2015 … ADP 3 4 1 4 4 1 3 2 3 1
#> 4 11.03.2015 … KHB 3 3 2 4 3 3 3 3 3 2
#> 5 11.03.2015 … PTG 4 3 1 4 4 3 4 2 3 4
#> 6 11.03.2015 … ABL 3 2 1 4 2 3 4 3 3 3
#> # … with 22 more variables: n_facebook_friends <dbl>, n_hangover <dbl>,
#> # age <dbl>, sex <chr>, extra_single_item <dbl>, time_conversation <dbl>,
#> # presentation <chr>, n_party <dbl>, clients <chr>, extra_vignette <chr>,
#> # i21 <lgl>, extra_vignette2 <dbl>, major <chr>, smoker <chr>,
#> # sleep_week <dbl>, sleep_wend <dbl>, clients_freq <dbl>, extra_mean <dbl>,
#> # extra_md <dbl>, extra_aad <dbl>, extra_mode <dbl>, extra_iqr <dbl>
Select the items (columns) we would like to plot the distribution for:
d_items <-
d %>%
select(matches("i\\d\\d")) %>%
select(-i21)
d_item_names <-
names(d_items)
d_item_names
#> [1] "i01" "i02r" "i03" "i04" "i05" "i06r" "i07" "i08" "i09" "i10"
4 Let’s plot
4.1 Way 1
map(d_item_names,
~ ggplot(data = d_items) + geom_bar(aes(x = .data[[.x]])) + labs(y = .x))
#> [[1]]
#>
#> [[2]]
#>
#> [[3]]
#>
#> [[4]]
#>
#> [[5]]
#>
#> [[6]]
#>
#> [[7]]
#>
#> [[8]]
#>
#> [[9]]
#>
#> [[10]]
4.2 Way 2
d_items %>%
pivot_longer(everything(), names_to = "item") %>%
group_by(item) %>%
group_split() %>%
map(~ {ggplot(., aes(x = value)) + geom_bar()})
#> [[1]]
#>
#> [[2]]
#>
#> [[3]]
#>
#> [[4]]
#>
#> [[5]]
#>
#> [[6]]
#>
#> [[7]]
#>
#> [[8]]
#>
#> [[9]]
#>
#> [[10]]
4.3 Way 3
d_items %>%
pivot_longer(everything(), names_to = "item") %>%
mutate(item = factor(item, levels = d_item_names)) %>%
ggplot(aes(x = value)) +
geom_bar() +
facet_wrap(~ item)
4.4 Way 4
library(DataExplorer)
d_items %>%
plot_histogram()
5 Reproducibility
#> ─ Session info ───────────────────────────────────────────────────────────────────────────────────────────────────────
#> setting value
#> version R version 4.2.1 (2022-06-23)
#> os macOS Big Sur ... 10.16
#> system x86_64, darwin17.0
#> ui X11
#> language (EN)
#> collate en_US.UTF-8
#> ctype en_US.UTF-8
#> tz Europe/Berlin
#> date 2022-09-26
#> pandoc 2.19.2 @ /usr/local/bin/ (via rmarkdown)
#>
#> ─ Packages ───────────────────────────────────────────────────────────────────────────────────────────────────────────
#> package * version date (UTC) lib source
#> assertthat 0.2.1 2019-03-21 [1] CRAN (R 4.2.0)
#> backports 1.4.1 2021-12-13 [1] CRAN (R 4.2.0)
#> bit 4.0.4 2020-08-04 [1] CRAN (R 4.2.0)
#> bit64 4.0.5 2020-08-30 [1] CRAN (R 4.2.0)
#> blogdown 1.12 2022-09-15 [1] CRAN (R 4.2.1)
#> bookdown 0.29 2022-09-12 [1] CRAN (R 4.2.0)
#> broom 1.0.1 2022-08-29 [1] CRAN (R 4.2.0)
#> bslib 0.4.0 2022-07-16 [1] CRAN (R 4.2.0)
#> cachem 1.0.6 2021-08-19 [1] CRAN (R 4.2.0)
#> callr 3.7.2 2022-08-22 [1] CRAN (R 4.2.0)
#> cellranger 1.1.0 2016-07-27 [1] CRAN (R 4.2.0)
#> cli 3.4.0 2022-09-08 [1] CRAN (R 4.2.0)
#> codetools 0.2-18 2020-11-04 [2] CRAN (R 4.2.1)
#> colorout * 1.2-2 2022-06-13 [1] local
#> colorspace 2.0-3 2022-02-21 [1] CRAN (R 4.2.0)
#> crayon 1.5.1 2022-03-26 [1] CRAN (R 4.2.0)
#> curl 4.3.2 2021-06-23 [1] CRAN (R 4.2.0)
#> data.table 1.14.2 2021-09-27 [1] CRAN (R 4.2.0)
#> DataExplorer * 0.8.2 2020-12-15 [1] CRAN (R 4.2.0)
#> DBI 1.1.3 2022-06-18 [1] CRAN (R 4.2.0)
#> dbplyr 2.2.1 2022-06-27 [1] CRAN (R 4.2.0)
#> devtools 2.4.4 2022-07-20 [1] CRAN (R 4.2.0)
#> digest 0.6.29 2021-12-01 [1] CRAN (R 4.2.0)
#> dplyr * 1.0.10 2022-09-01 [1] CRAN (R 4.2.0)
#> ellipsis 0.3.2 2021-04-29 [1] CRAN (R 4.2.0)
#> evaluate 0.16 2022-08-09 [1] CRAN (R 4.2.0)
#> fansi 1.0.3 2022-03-24 [1] CRAN (R 4.2.0)
#> farver 2.1.1 2022-07-06 [1] CRAN (R 4.2.0)
#> fastmap 1.1.0 2021-01-25 [1] CRAN (R 4.2.0)
#> forcats * 0.5.2 2022-08-19 [1] CRAN (R 4.2.0)
#> fs 1.5.2 2021-12-08 [1] CRAN (R 4.2.0)
#> gargle 1.2.1 2022-09-08 [1] CRAN (R 4.2.0)
#> generics 0.1.3 2022-07-05 [1] CRAN (R 4.2.0)
#> ggplot2 * 3.3.6.9000 2022-09-05 [1] Github (tidyverse/ggplot2@a58b48c)
#> glue 1.6.2 2022-02-24 [1] CRAN (R 4.2.0)
#> googledrive 2.0.0 2021-07-08 [1] CRAN (R 4.2.0)
#> googlesheets4 1.0.1 2022-08-13 [1] CRAN (R 4.2.0)
#> gridExtra 2.3 2017-09-09 [1] CRAN (R 4.2.0)
#> gtable 0.3.1 2022-09-01 [1] CRAN (R 4.2.0)
#> haven 2.5.1 2022-08-22 [1] CRAN (R 4.2.0)
#> highr 0.9 2021-04-16 [1] CRAN (R 4.2.0)
#> hms 1.1.2 2022-08-19 [1] CRAN (R 4.2.0)
#> htmltools 0.5.3 2022-07-18 [1] CRAN (R 4.2.0)
#> htmlwidgets 1.5.4 2021-09-08 [1] CRAN (R 4.2.0)
#> httpuv 1.6.6 2022-09-08 [1] CRAN (R 4.2.0)
#> httr 1.4.4 2022-08-17 [1] CRAN (R 4.2.0)
#> igraph 1.3.4 2022-07-19 [1] CRAN (R 4.2.0)
#> jquerylib 0.1.4 2021-04-26 [1] CRAN (R 4.2.0)
#> jsonlite 1.8.0 2022-02-22 [1] CRAN (R 4.2.0)
#> knitr 1.40 2022-08-24 [1] CRAN (R 4.2.0)
#> labeling 0.4.2 2020-10-20 [1] CRAN (R 4.2.0)
#> later 1.3.0 2021-08-18 [1] CRAN (R 4.2.0)
#> lifecycle 1.0.2 2022-09-05 [1] Github (r-lib/lifecycle@f92faf7)
#> lubridate 1.8.0 2021-10-07 [1] CRAN (R 4.2.0)
#> magrittr 2.0.3 2022-03-30 [1] CRAN (R 4.2.0)
#> memoise 2.0.1 2021-11-26 [1] CRAN (R 4.2.0)
#> mime 0.12 2021-09-28 [1] CRAN (R 4.2.0)
#> miniUI 0.1.1.1 2018-05-18 [1] CRAN (R 4.2.0)
#> modelr 0.1.9 2022-08-19 [1] CRAN (R 4.2.0)
#> munsell 0.5.0 2018-06-12 [1] CRAN (R 4.2.0)
#> networkD3 0.4 2017-03-18 [1] CRAN (R 4.2.0)
#> pillar 1.8.1 2022-08-19 [1] CRAN (R 4.2.0)
#> pkgbuild 1.3.1 2021-12-20 [1] CRAN (R 4.2.0)
#> pkgconfig 2.0.3 2019-09-22 [1] CRAN (R 4.2.0)
#> pkgload 1.3.0 2022-06-27 [1] CRAN (R 4.2.0)
#> prettyunits 1.1.1 2020-01-24 [1] CRAN (R 4.2.0)
#> processx 3.7.0 2022-07-07 [1] CRAN (R 4.2.0)
#> profvis 0.3.7 2020-11-02 [1] CRAN (R 4.2.0)
#> promises 1.2.0.1 2021-02-11 [1] CRAN (R 4.2.0)
#> ps 1.7.1 2022-06-18 [1] CRAN (R 4.2.0)
#> purrr * 0.3.4 2020-04-17 [1] CRAN (R 4.2.0)
#> R6 2.5.1 2021-08-19 [1] CRAN (R 4.2.0)
#> Rcpp 1.0.9 2022-07-08 [1] CRAN (R 4.2.0)
#> readr * 2.1.2 2022-01-30 [1] CRAN (R 4.2.0)
#> readxl 1.4.1 2022-08-17 [1] CRAN (R 4.2.0)
#> remotes 2.4.2 2021-11-30 [1] CRAN (R 4.2.0)
#> reprex 2.0.2 2022-08-17 [1] CRAN (R 4.2.0)
#> rlang 1.0.5 2022-08-31 [1] CRAN (R 4.2.0)
#> rmarkdown 2.16 2022-08-24 [1] CRAN (R 4.2.0)
#> rstudioapi 0.14 2022-08-22 [1] CRAN (R 4.2.0)
#> rvest 1.0.3 2022-08-19 [1] CRAN (R 4.2.0)
#> sass 0.4.2 2022-07-16 [1] CRAN (R 4.2.0)
#> scales 1.2.1 2022-08-20 [1] CRAN (R 4.2.0)
#> sessioninfo 1.2.2 2021-12-06 [1] CRAN (R 4.2.0)
#> shiny 1.7.2 2022-07-19 [1] CRAN (R 4.2.0)
#> stringi 1.7.8 2022-07-11 [1] CRAN (R 4.2.0)
#> stringr * 1.4.1 2022-08-20 [1] CRAN (R 4.2.0)
#> tibble * 3.1.8 2022-07-22 [1] CRAN (R 4.2.0)
#> tidyr * 1.2.1 2022-09-08 [1] CRAN (R 4.2.0)
#> tidyselect 1.1.2 2022-02-21 [1] CRAN (R 4.2.0)
#> tidyverse * 1.3.2 2022-07-18 [1] CRAN (R 4.2.0)
#> tzdb 0.3.0 2022-03-28 [1] CRAN (R 4.2.0)
#> urlchecker 1.0.1 2021-11-30 [1] CRAN (R 4.2.0)
#> usethis 2.1.6 2022-05-25 [1] CRAN (R 4.2.0)
#> utf8 1.2.2 2021-07-24 [1] CRAN (R 4.2.0)
#> vctrs 0.4.1 2022-04-13 [1] CRAN (R 4.2.0)
#> vroom 1.5.7 2021-11-30 [1] CRAN (R 4.2.0)
#> withr 2.5.0 2022-03-03 [1] CRAN (R 4.2.0)
#> xfun 0.33 2022-09-12 [1] CRAN (R 4.2.0)
#> xml2 1.3.3 2021-11-30 [1] CRAN (R 4.2.0)
#> xtable 1.8-4 2019-04-21 [1] CRAN (R 4.2.0)
#> yaml 2.3.5 2022-02-21 [1] CRAN (R 4.2.0)
#>
#> [1] /Users/sebastiansaueruser/Rlibs
#> [2] /Library/Frameworks/R.framework/Versions/4.2/Resources/library
#>
#> ──────────────────────────────────────────────────────────────────────────────────────────────────────────────────────